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1. Introduction
Many new engineering applications in heat conduction problems involve
considerably high heating rates. This is especially important when a physical
process occurs in a time interval comparable to the relaxation time of the
medium, or at cryogenic temperatures which correspond to low thermal
propagation speed. In such cases, the change in temperature distribution occurs
so fast that there is not enough time to reach the thermodynamic equilibrium
state. In other words, heat does not transfer with an infinite speed as predicted
by the so-called Fourier law. Instead the temperature distribution in the body
exhibits a thermal wave travelling with a certain speed. This speed is directly
related to the relaxation time τ which is a thermodynamic property of the
material and must be determined experimentally. The relaxation time τ
represents the phase-lag in time which means that it takes a time τ for a
temperature gradient to produce a heat flux. The relaxation parameter τ ranges
from 10–10 seconds for gases to 10–14 seconds for metals. 

In general, this non-Fourier effect is shown to decay quickly, but Yuen and
Lee (1989) showed that the effect can be important even at a long time after the
initial transient if the thermal disturbance is oscillatory with the period of
oscillation of the same order of magnitude as the thermal relaxation time.
Barletta and Zanchini (1996) have recently studied the thermal resonance
phenomenon which remains in a steady state regime.

In order to accommodate this behavior in the heat conduction equation, a
modified (non-Fourier) constitutive equation for heat flow has to be invoked. In
1948, Cattaneo proposed a generalized law, the relaxation model, by introducing
the time derivative of the heat flux in the Fourier hypothesis (Cattaneo, 1948).
The relaxation model has been widely used in many recent publications. Tzou
(1992) has recently generalized the relaxation model further by introducing the
phase-lag concept.

There are a large number of published papers which can be found in the
literature. State-of-the art reviews by Joseph and Preziosi (1989; 1990) and
Özisik and Tzou (1994) provide an excellent list of references for an interested
reader. Most of the studies on non-Fourier heat conduction (NFHC) have focused
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on simple boundary value problems which can be solved in closed form (e.g.
Özisik and Vick, 1984). There are also a few numerical simulations of the NFHC
reported for problems in a one-dimensional domain (e.g. Glass et al., 1985;
Sadeghipour and Manzari, 1990). Sadeghipour and Manzari (1990) have
proposed a finite element method for solving the NFHC equations. In that work,
the final governing equations were written in terms of temperature only. The
first author of this paper also developed a simple method to predict the
temperature jump due to thermal shocks (Manzari, 1990).

Although most published works focus on simple boundary value problems,
practical application of the NFHC theory requires the capability to treat very
complex geometries as well as more complicated boundary conditions.
Numerical methods such as the finite element method are excellent alternatives
for development of a general framework which can treat complex geometries
and boundary conditions.

In this work, the major goal is to develop a finite element method which
treats the heat flux as an independent variable in addition to temperature. Such
inclusion of the heat flux as an independent unknown in the final matrix
equations greatly enhances the flexibility to impose any boundary condition
and to calculate both temperature and the heat flux with the same degree of
accuracy. 

2. Governing equations
Conservation of energy for an infinitesimal element of a solid body requires

(1)

where qi is the heat flux in the ith direction of a Cartesian co-ordinate system, T
is temperature. The notation i denotes a partial derivative with respect to i and
a superposed dot stands for a time derivative. In this equation, ρ density and Cp
specific heat at constant pressure are material properties and g is the heat
generation function. Coleman et al. (1982) have shown that the first law of
thermodynamics has to be modified for NFHC problems but Bai and Lavine
(1995) have shown that for many engineering applications there was no need for
such modifications.

A commonly used non-Fourier heat conduction equation can be written as

(2)

where K and τ are tensors of thermal conductivity and relaxation parameter of
the medium respectively, defined as

(3)
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Here τi is the relaxation time parameter which is defined as αi/ci
2, where α is the

thermal diffusivity and ci is the speed of thermal wave in the medium. The case
τ = 0 corresponds to Fourier heat conduction equation. 

Initial condition
The following initial conditions are usually applied

(4)

where T0 is the initial temperature of the domain. 

Boundary condition
Various boundary conditions may be considered in a heat conduction problem.
Details of different boundary conditions are discussed in the following. 

The temperature boundary condition states 

(5)

where ST is the portion of boundary on which a specified temperature is imposed.
To specify the surface heat flux, qs, the following boundary condition must

be used

(6)

on Sq, where ni is the ith component of the unit vector outward normal to the
boundary. Note that the negative sign denotes inflow heat flux to the domain.

If convective heat transfer is taking place on some part of the body, then the
following condition has to be imposed

(7)

on Sc, where h is the convective heat transfer coefficient and Te is the ambient
temperature and Ts is the surface temperature of the body. If radiation heat
transfer is also encountered, the following equation can be used

(8)

on Sr , where Tr and Ts are temperatures of the radiative source and surface
temperature of the body respectively, and hr is defined as follows

(9)

where kr includes the Stefan-Boltzmann constant, the emissivity and the shape
factor.

In general, various combinations of the boundary conditions may exist.
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3. Finite element formulation
The Galerkin weighted residual method is used to transform the governing
differential equations (1) and (2) to integral form. The integral forms are then
discretized by applying a standard finite element technique Zienkiewicz and
Taylor, 1988).

Applying the Galerkin weighted residual method to equation (1), we have

(10)

(11)

where w1, w2 are weighting functions. Applying the Green’s theorem to
equation (10) leads to 

(12)

Equation (11) is already in suitable form for finite element solution.
The finite element technique is now utilized to discretize the problem to a

number of mixed finite elements. The temperature and heat fluxes’
distributions within each element may be approximated using different
interpolation functions as

(13)

where TNj and qNj denote the interpolation function at node j of a generic
element for the temperature and the flux distribution respectively. The l and m
are the number of nodes in the element used to interpolate the temperature and
the flux distribution respectively. To accommodate the different interpolation
functions used to interpolate the temperature and the flux distribution within
each finite element, a mixed (T6 – q3) triangular element is used as shown in
Figure 1.

Introducing the approximation series (13) into equations (11) and (12) leads to

(14)

where typical components (e.g. i-j component) of the above matrices and vectors
for a 2D domain are defined as
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(15)

(16)

(17)

(18)

(19)

(20)

in which i and j are two arbitrary nodes of the element. In equations (18) and (19)
it is assumed that we have both the specified heat flux qs and the convective
heat transfer, characterized by h and Te, on the boundary of the element as

Figure 1.
A typical element and

its nodal variables
Temperature and Flux Node

Temperature Node

Key
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(21)

The radiative boundary condition can be handled in the same way as the
convective boundary condition by replacing h by hr and Te by Tr .

Time integration scheme
The system of the ordinary differential equation (14) has to be integrated in
terms of time to determine the nodal unknowns at a certain time, e.g. t + ∆t.
Equation (14) can be written in the general form of

(22)

where [K
–

]= [K] + [Ks] and {F
–

} = {F} = {Fs}. Using a one parameter (β)
interpolation scheme with ( 0 < β < 1 ) , we have

(23)

Then equation (22) can be written at time t + ∆t as follows

(24)

or

(25)

where [M] and [K
–

] are computed at time t. Therefore, equation (25) can be solved
to determine {∆} at time t + ∆t explicitly. 

The integration method is unconditionally stable for β = 0.5 (Crank-Nicolson
scheme) and β = 2/3 (Galerkin method).

4. Test problems
In order to verify the validity and efficiency of the proposed method, two one-
dimensional test problems for which exact analytical and/or numerical
solutions exist are considered first. This is followed by solving two sample 2D
problems to demonstrate the capability of the proposed method in dealing with
multidimensional problems.

Semi-infinite medium subjected to a step change in the surface heat flux
Consider non-Fourier heat conduction in a semi-infinite medium, initially
maintained at zero temperature. At time t = 0 , the boundary surface at x = 0 is
exposed to a constant heat flux qs. The same surface radiates to the
surrounding which maintains at Tr = 0. The governing equations in
dimensionless form become (Glass et al., 1985)
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(26)

where the non-dimensionalized temperature 

(27)

are functions of η and θ defined as

(28)

where TR is a reference temperature defined as

(29)

and qs is the specified heat flux on the boundary. The initial conditions are

(30)

and the boundary condition is written as

(31)

with

(32)

The radiation parameter, KR, depicts the effect of surface radiation on the
temperature distribution. Figure 2 shows the temperature distribution in the
medium at θ = 0.5 and θ = 1.0 respectively, for KR = 0.0,0.1. Figure 3 shows the
variation of the surface temperature with time. It is seen that due to heat
radiation to the ambient, the surface temperature for KR = 0.1 is less than the
surface temperature for no radiation case. In these figures the analytical
solution obtained by Maurer and Thompson (1973) for KR = 0, and the finite
difference solution of Glass et al. (1985) and the integral equation solution of Wu
(1988), which coincide with each other, for KR = 0.1 are also shown. As it can be
seen, the results of the proposed numerical scheme are in good agreement with
the analytical solutions and capture the surface temperature jump and the
location of the wave front accurately. The small oscillation seen in Figures 2 and
3 could be alleviated by using a finer grid and a smaller time step.
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Semi-infinite medium subjected to a step change in the surface temperature
The above problem is solved with different boundary condition. The surface
temperature is increased to a constant value Ts at t= 0. Using a different

Figure 2.
Step change in surface
heat flux; bottom curves
(θ = 0.5), top curves 
(θ = 1.0)– solid lines for
KR = 0.0: (Maurer and
Thompson, 1973), solid
lines for (KR = 0.1):(Wu,
1988), circle: FEM
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definition for the reference temperature as TR = Ts – T0, the mathematical
formulation of this problem becomes similar to the previous case except for the
surface boundary condition which is given as u(0,θ) = 1.0. The numerical
solution obtained from the proposed finite element formulation is illustrated in
Figure 4 at θ =0.5 and θ = 1.0. The analytical solution of Baumeister and Hamill
(1969) is also shown in the same figure for comparison. Again good agreement
with the analytical solution is achieved and the solution could be improved by
using a finer grid and a smaller time step as suggested in the previous test case.

Two-dimensional problems
Two sample problems are considered here to illustrate the application of the
proposed method in multidimensional cases. These problems are envisioned to
be the two-dimensional counterparts of the above test problems. Figure 5 shows
a schematic of the domain and its boundary conditions for two different cases
we consider here.

A step change in the surface heat flux
Consider an isotropic square body, initially maintained at zero temperature, the
non-Fourier heat conduction equation in dimensionless form becomes

(33)

Figure 3.
Step change in surface

heat flux; surface
temperature variation;
top curve (KR = 0.0) –

solid line: (Maurer and
Thompson, 1973), circle:

FEM, bottom curve 
(KR = 0.1) – solid line:

(Wu, 1988), square:
FEM.

Temperature
2.5

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

Time
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for 0 ≤ η ≤ 1 and 0 ≤ ξ ≤ 1. Suppose that at time t = 0, surface temperature of the
body in the interval 0 ≤ η ≤ 0.5 is exposed to a constant heat flux qs, while the
rest of the boundary is adiabatic. Figure 6 shows isotherms and the qη and qξ
contours at θ = 0.5 and θ = 1.0. This figure visualizes moving thermal waves
travelling inside the domain. In Figure 7 dotted lines show the evolution of all
three primitive variables with respect to time for a point in the middle of the
domain. The time delay for wave to reach this point is clearly due to wave
nature of phenomenon. The oscillation before and after wave front may be
attributed to the time integration scheme employed in this work. It can be
shown that a better short-time accuracy is achieved by using the Galerkin

Figure 4.
Step change in surface
temperature;
temperature
distribution inside
domain at θ = 0.5
(bottom curve) and 
θ = 1.0 (top curve). Solid
line: Baumeister and
Hamill (1969), circle:
present method

Temperature
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.8 1.0

Distance from surface
0.6

Figure 5.
Domain and boundary
conditions for 2D test
cases

Adiabatic wallHeat flux qs Adiabatic wallIsothermal wall
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Figure 6.
Step change in surface
heat flux; left column: 
θ = 0.5, right column: 

θ = 1.0
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method (β = 2/3) rather than using the Crank-Nicholson (β = 1/2 ) method
(Lewis et al., 1996).

A step change in the surface temperature
Consider the previous problem with different boundary condition. Suppose
that the surface temperature in the interval 0 ≤ η ≤ 0.5 suddenly rises to a
constant value, Ts, at time θ = 0. Figure 8 shows the computed isotherms along
with the qη and qξ contour plots at θ = 0.5 and θ = 1.0. An almost similar
phenomenon is observed here as in the previous case. Again the evolution of
temperature and heat fluxes in the middle point of the domain are shown by
solid lines in Figure 7.

5. Conclusions
A mixed finite element approach was devised to solve the non-Fourier heat
conduction problems. Owing to flexibility in imposing different boundary
conditions and because of simultaneous solution for temperature and heat
flux components, the proposed method appears to be effective in dealing with
problems of heat wave propagation. The solution of 2D test cases confirms
that the method can correctly capture physics of the heat wave motion.

Figure 7.
Temperature and heat
fluxes evolution in the
middle point; dotted
lines: step change in
heat flux, solid lines:
step change in surface
temperature
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Figure 8.
Step change in surface

temperature; left
column: θ = 0.5, right

column θ = 1.0
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